李燕(副教授)
发布人:陈文雪  发布时间:2021-11-30   浏览次数:3824


»姓名:李燕

»系属:应用数学系

 

»学位:博士

»职称:副教授

»学科:应用数学

»导师类别:硕导

»电子邮箱:liyan@upc.edu.cn

»联系电话:

»通讯地址:山东省青岛市黄岛区长江西路66号(邮编:266580

»概况

◎研究方向
生态学中的偏微分方程动力学系统


◎学习与工作经历

1999.09-2003.07 烟台师范学院, 理学学士

2003.09-2006.07 武汉大学, 理学硕士

2010.03-2014.12 哈尔滨工业大学, 理学博士

2006.07-2016.12 金沙8888js官方(华东)应用数学系, 讲师

2016.12-至今 金沙8888js官方(华东)应用数学系,   副教授。

◎主讲课程
1.
主讲本科生必修课。《线性代数》《计算方法》等课程
2.
主讲研究生《定性理论》《非线性椭圆型方程》等课程

◎指导研究生
累计指导硕士研究生3名。

◎承担和参与项目
1.
近年来,主持的代表性科研项目:

1)生态学中的趋化模型的整体解和稳态解分析,山东省自然科学基金-面上项目,2022.01-2024.12

2)反应扩散捕食模型的平衡解及分支分析,国家自然科学基金青年基金项目,2016.01-2018.12

3)几类偏微分方程组的动力学行为,   中央高校基础研究专项基金,2017.01-2019.12

4)几类反应扩散捕食模型的平衡解分析,中央高校基础研究专项基金,2015.01-2016.12

2.近年来,参与的代表性科研项目:

1)变区域上非线性偏微分方程解的动力学行为研究,国家自然科学基金青年基金项目,2017.01-2019.12

2)随机生物数学模型平稳分布及周期解研究,国家自然科学基金青年基金项目,2019.01-2021.12

3)反应扩散方程组非齐次稳态解的存在性、稳定性及分支研究,山东省自然科学基金-面上项目,2019.07-2022.6

◎论文
1Yan Li, Sanyun Li, Fengrong   Zhang*. Dynamics of a diffusive predatpr-prey model with herd behavior.   Nonlinear Analysis: Modelling and Control, 2020,25:19-35.

2Min Zhang*, Yi Wang, Yan Li. Reducibility and   quasi-periodic solutions for a two dimensional beam equation with   quasi-periodic in time potential. AIMS Mathematics,6(1),2020:643-674.

3Fengrong Zhang , Yan Li, Changpin Li*. Hopf   bifurcation in a delayed diffusive Leslie-gower predator-prey model with herd   behavior. International Journal of Bifurcation and Chaos. 29, 2019: 1950055.

4Fengrong Zhang, Xinhong Zhang, Yan Li, Changpin   Li*. Hopf bifurcation of a delayed predator-prey model with nonconstant death   rate and constant-rate prey-harvesting. International Journal of Bifurcation   and Chaos. 28, 2018:1850179.

5Fengrong Zhang, Yan Li*. Stability and Hopf   bifurcation of a delayed-diffusive predator-prey model with hyperbolic   mortality and nonlinear prey harvesting. Nonlinear Dynamics.   88.2017:1397-1412.

6Yan Li*, Sanyun Li, Jingfu   Zhao. Global stability and Hopf bifurcation of a diffusive predator-prey   model with hyperbolic mortality and prey harvesting, Nonlinear Analysis:   Modelling and Control, 2017,22:646-661.

7Xinhong Zhang, Yan Li, Daqing Jiang*. Dynamics of a   stochastic Holling type II predator-prey model with hyperbolic mortality.   Nonlinear Nynamics. 2016.

8Yan Li*,Hopf bifurcations   in general systems of Brusselator typeNonlinear   Analysis: Real World Applications201628:32-47.

9Yan Li*Coexistence   of steady state for a diffusive prey-predator model with harvestingElectronic Journal of Differential Equations2016,2016205:1-15.

10Yan Li*,Dynamics of a   delayed diffusive predator-prey model with hyperbolic mortalityNonlinear Dynamics,201685):2425-2436.

11Yan Li*,Xinhong Zhang,   Bingchen Liu, Global stability and stationary pattern of a diffusive   prey-predator model with modified Leslie-Gower term and Holling II functional   response,The Journal of Nonlinear Science and Applications, 20169:2527-2540.

12Mingchuan LI, Shuanshi Fan, Yuliang Su, Fuhai Xu, Yan Li,   Mingjing Lu, Guanglong  Sheng, Ke Yan. The Stefan moving boundary   model for the heat-dissociation hydrate with a density difference. Energy.   160, 2018.1124-1132.

13Yan Li, Mingxin   Wang*, Dynamics of a Diffusive Predator-Prey Model with Modified  Leslie-Gower   Term and Michaelis-Menten Type Prey Harvesting, ActaApplicandae   Mathematicae,2015140(1) 147-172.

14Yan Li, Mingxin Wang*,Hopf bifurcation   and global stability of a delayed

predator-rey model with   prey harvesting,Computers and Mathematics with  Applications, 201569:398-410.

15Yan Li, Mingxin Wang*,   Stationary pattern of a diffusive preypredator model with trophic intersections   of three levelsNonlinear Analysis: Real World   Applications201314(3):1806-1816.

16Yan Li*,Steady-state   solution for a general Schnakenberg model,Nonlinear Analysis: Real World   Applications 20111219851990.

17Yan Li* , Non-uniform dependence   for the Cauchy problem of the general b-equation, Journal of Mathematical   Physics,  201152, 033101.

18李燕,刘伟安,黄启华一类具有无穷时滞竞争扩散模型的周期解的存在性,数学杂志,位次:1/3,2007年第27卷第3期,页码:301-306

19李燕,刘伟安,孔杨. EXISTENCE OF SOLUTION FOR   PREDATOR-PREY SYSTEM WITH SIZE-STRUCTURE,数学杂志,位次:1/3Vol.302010973-979

20Weigang Wang, Yan Li, Dihe Hu. EXTINCTION OF POPULATION-SIZE-DEPENDENT   BRANCHING CHAINS IN RANDOM ENVIRONMENTSACTA   MATHEMATICA SCIENTIA 2010, 30(4) 1065-1072 ,位次:2/3

 

 


 
Baidu
sogou