◎研究方向 生态学中的偏微分方程动力学系统 ◎学习与工作经历
1999.09-2003.07 烟台师范学院, 理学学士 2003.09-2006.07 武汉大学, 理学硕士 2010.03-2014.12 哈尔滨工业大学, 理学博士 2006.07-2016.12 金沙8888js官方(华东)应用数学系, 讲师 2016.12-至今 金沙8888js官方(华东)应用数学系, 副教授。
◎主讲课程 1.主讲本科生必修课。《线性代数》《计算方法》等课程 2.主讲研究生《定性理论》《非线性椭圆型方程》等课程
◎指导研究生 累计指导硕士研究生3名。
◎承担和参与项目 1.近年来,主持的代表性科研项目: (1)生态学中的趋化模型的整体解和稳态解分析,山东省自然科学基金-面上项目,2022.01-2024.12; (2)反应扩散捕食模型的平衡解及分支分析,国家自然科学基金青年基金项目,2016.01-2018.12; (3)几类偏微分方程组的动力学行为, 中央高校基础研究专项基金,2017.01-2019.12; (4)几类反应扩散捕食模型的平衡解分析,中央高校基础研究专项基金,2015.01-2016.12; 2.近年来,参与的代表性科研项目: (1)变区域上非线性偏微分方程解的动力学行为研究,国家自然科学基金青年基金项目,2017.01-2019.12; (2)随机生物数学模型平稳分布及周期解研究,国家自然科学基金青年基金项目,2019.01-2021.12; (3)反应扩散方程组非齐次稳态解的存在性、稳定性及分支研究,山东省自然科学基金-面上项目,2019.07-2022.6
◎论文 (1)Yan Li, Sanyun Li, Fengrong Zhang*. Dynamics of a diffusive predatpr-prey model with herd behavior. Nonlinear Analysis: Modelling and Control, 2020,25:19-35. (2)Min Zhang*, Yi Wang, Yan Li. Reducibility and quasi-periodic solutions for a two dimensional beam equation with quasi-periodic in time potential. AIMS Mathematics,6(1),2020:643-674. (3)Fengrong Zhang , Yan Li, Changpin Li*. Hopf bifurcation in a delayed diffusive Leslie-gower predator-prey model with herd behavior. International Journal of Bifurcation and Chaos. 29, 2019: 1950055. (4)Fengrong Zhang, Xinhong Zhang, Yan Li, Changpin Li*. Hopf bifurcation of a delayed predator-prey model with nonconstant death rate and constant-rate prey-harvesting. International Journal of Bifurcation and Chaos. 28, 2018:1850179. (5)Fengrong Zhang, Yan Li*. Stability and Hopf bifurcation of a delayed-diffusive predator-prey model with hyperbolic mortality and nonlinear prey harvesting. Nonlinear Dynamics. 88.2017:1397-1412. (6)Yan Li*, Sanyun Li, Jingfu Zhao. Global stability and Hopf bifurcation of a diffusive predator-prey model with hyperbolic mortality and prey harvesting, Nonlinear Analysis: Modelling and Control, 2017,22:646-661. (7)Xinhong Zhang, Yan Li, Daqing Jiang*. Dynamics of a stochastic Holling type II predator-prey model with hyperbolic mortality. Nonlinear Nynamics. 2016. (8)Yan Li*,,Hopf bifurcations in general systems of Brusselator type,Nonlinear Analysis: Real World Applications,2016,28:32-47. (9)Yan Li*,Coexistence of steady state for a diffusive prey-predator model with harvesting,Electronic Journal of Differential Equations,2016,2016(205):1-15. (10)Yan Li*,,Dynamics of a delayed diffusive predator-prey model with hyperbolic mortality,Nonlinear Dynamics,2016(85):2425-2436. (11)Yan Li*,,Xinhong Zhang, Bingchen Liu, Global stability and stationary pattern of a diffusive prey-predator model with modified Leslie-Gower term and Holling II functional response,The Journal of Nonlinear Science and Applications, 2016,9:2527-2540. (12)Mingchuan LI, Shuanshi Fan, Yuliang Su, Fuhai Xu, Yan Li, Mingjing Lu, Guanglong Sheng, Ke Yan. The Stefan moving boundary model for the heat-dissociation hydrate with a density difference. Energy. 160, 2018.1124-1132. (13)Yan Li, Mingxin Wang*, Dynamics of a Diffusive Predator-Prey Model with Modified Leslie-Gower Term and Michaelis-Menten Type Prey Harvesting, ActaApplicandae Mathematicae,2015,140(1): 147-172. (14)Yan Li, Mingxin Wang*,Hopf bifurcation and global stability of a delayed predator-rey model with prey harvesting,Computers and Mathematics with Applications, 2015,69:398-410. (15)Yan Li, Mingxin Wang*, Stationary pattern of a diffusive prey–predator model with trophic intersections of three levels,Nonlinear Analysis: Real World Applications,2013,14(3):1806-1816. (16)Yan Li*,,Steady-state solution for a general Schnakenberg model,Nonlinear Analysis: Real World Applications, 2011,12:1985–1990. (17)Yan Li* , Non-uniform dependence for the Cauchy problem of the general b-equation, Journal of Mathematical Physics, 2011,52, 033101. (18)李燕,刘伟安,黄启华. 一类具有无穷时滞竞争扩散模型的周期解的存在性,数学杂志,位次:1/3,2007年第27卷第3期,页码:301-306; (19)李燕,刘伟安,孔杨. EXISTENCE OF SOLUTION FOR PREDATOR-PREY SYSTEM WITH SIZE-STRUCTURE,数学杂志,位次:1/3,Vol.30(2010)973-979; (20)Weigang Wang, Yan Li, Dihe Hu. EXTINCTION OF POPULATION-SIZE-DEPENDENT BRANCHING CHAINS IN RANDOM ENVIRONMENTS,ACTA MATHEMATICA SCIENTIA 2010, 30(4) 1065-1072 ,位次:2/3 |